Category Archives: Longevity tech

Google’s New Moonshot Project: the Human Body

Google has announced a new ‘baseline’ study of the human body. Here’s the story from the WSJ.

“Google has embarked on what may be its most ambitious and difficult science project ever: a quest inside the human body.

Called Baseline Study, the project will collect anonymous genetic and molecular information from 175 people—and later thousands more—to create what the company hopes will be the fullest picture of what a healthy human being should be.”

Silicon Valley Moves the Needle on Curing Aging

Here’s a piece I wrote for Slate.

“Silicon Valley, known for entrepreneurs, gadget lovers, and paradigm breakers, has recently turned its attention towards longevity, powering an important cultural change on the topic. The interests of these movers and shakers run the gamut, from using technology to improve our clunky healthcare system to literally solving the problem of aging.”

Read more here.

Science Fiction Becomes Science-Fact: Two Strategies for Repairing Humans

Here’s my first article in a series for Slate magazine on longevity. Thanks to Prudential for sponsoring my obsession with health extension!

“Not long ago, it would have sounded like science fiction to discuss growing human organs in the lab or re-writing DNA. Yet today both are realities that will change the world and allow for longer and healthier lives.

Already, lab-grown bladders, windpipes and blood vessels have been successfully created and implanted into humans. Most recently, tissue engineering pioneer Dr. Anthony Atala and his team at the Wake Forest Institute for Regenerative Medicine announced another breakthrough: lab-made vaginas—one of the most complex organs made to date. In four girls with MRKH syndrome, a medical condition in which the vagina and uterus are underdeveloped or absent, Dr. Atala’s team was able to create new organs that functioned normally, dramatically increasing each patient’s quality of life.

[...]

Read more here.

US regulators fast-track novel leukemia therapy

The FDA is looking to speed up the availability of a new technique that put 89 percent of cancer patients into remission. Here’s the story.

“The personalized immunotherapy known as CTL019 was developed by the University of Pennsylvania and was designated a “breakthrough therapy” by the US Food and Drug Administration.

That means the experimental therapy will benefit from a speedier than average review process and will get extra attention from the FDA toward development for market.”

New method for delivering stem cells helps heal bone

From Singularity Hub:

“One trouble with stem cells is that they don’t stay put. When doctors put cardiovascular progenitor cells in the heart to heal damage from a heart attack, the cells are whisked away in the bloodstream in a matter of hours.”

[...]

“University of Rochester biomedical engineer Danielle Benoit encapsulated bone progenitor cells in a hydrogel wrapper and placed it on the bone she aimed to heal. Benoit hoped the wrapper would result in fewer stem cells being washed away and more sticking around to do the work of healing the bone.”

‘Bionic pancreas’ for diabetes patients passes test

From AP:

“Scientists have made big progress on a “bionic pancreas” to free some people with diabetes from the daily ordeal of managing their disease. A wearable, experimental device passed a real-world test, constantly monitoring blood sugar and automatically giving insulin or a sugar-boosting drug as needed, doctors said Sunday.”

An At-Home Medical Device That Cuts Out Trips to the Doctor

This seems like a super-cool device! I hope the FDA approves it quickly — I want one.

From Wired:

“The iPhone has enabled all sorts of crazy interactions, but a new device called Cue could be the first iOS accessory that uses boogers as a primary user input. The tabletop analyzer brings the power of a medical laboratory into the home and allows people to test their levels of testosterone, inflammation, vitamin D, and fertility with small amounts of blood, saliva, or nasal swabs.”

Scientists regenerate immune organ in mice

UK scientists report that they have fully restored a degenerated organ in a living animal, a discovery that could pave the way for future human therapies.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine, at the University of Edinburgh, who led the research, said: “By targeting a single protein, we have been able to almost completely reverse age-related shrinking of the thymus. Our results suggest that targeting the same pathway in humans may improve thymus function and therefore boost immunity in elderly patients, or those with a suppressed immune system. However, before we test this in humans we need to carry out more work to make sure the process can be tightly controlled.”

Here’s a BBC article about the work. And the original press release.

Dr. Atala on 3D tissue printing

Here’s a recent article by tissue engineering pioneer Dr. Anthony Atala. He makes a great point that printing tissue is beneficial not just so doctors can replace parts, but also so that drugs can be put through better testing.

He writes: “[I]n collaboration with five other institutions, we are working to print miniature hearts, lungs, blood vessels and livers onto “chips” that will be connected with a blood substitute. Called a “body on a chip,” the system has the potential to speed up the development of new drugs because it could potentially replace testing in animals, which can be slow, expensive and not always accurate.”

Awesome.

Blood vessel cells can repair organs, say Weill Cornell scientists

Another great bioengineering study. This one showing the possibility of repairing organs simply by injecting them with engineered endothelial cells.

Here’s the press release:

Damaged or diseased organs may someday be healed with an injection of blood vessel cells, eliminating the need for donated organs and transplants, according to scientists at Weill Cornell Medical College.

In studies appearing in recent issues of Stem Cell Journal and Developmental Cell, the researchers show that endothelial cells — the cells that make up the structure of blood vessels — are powerful biological machines that drive regeneration in organ tissues by releasing beneficial, organ-specific molecules.

They discovered this by decoding the entirety of active genes in endothelial cells, revealing hundreds of known genes that had never been associated with these cells. The researchers also found that organs dictate the structure and function of their own blood vessels, including the repair molecules they secrete.

Together, the studies show that endothelial cells and the organs they are transplanted into work together to repair damage and restore function, says the study’s lead investigator, Shahin Rafii, M.D., a professor of genetic medicine and co-director of the medical college’s Ansary Stem Cell Institute and Tri-SCI Stem Center. When an organ is injured, its blood vessels may not be able to repair the damage on their own because they may themselves be harmed or inflamed, says Dr. Rafii, who is also an investigator at the Howard Hughes Medical Institute.

A step on the way to therapeutic brain cells?

Will a person’s own brain cells be used to repair their brain one day? Maybe. Here’s an article that discusses the potential first steps — taking brain cells from a living person and growing more of them.

From the Third Age:

Researchers at the University of Western Ontario have found that cells from brain biopsies can be used to grow large numbers of patient’s own brain cells. These new therapeutic cells, when reintegrated in to the patient’s brain, express a broad array of natural and potent protective agents providing preservation and protection against injury, toxins, and neurodegenerative diseases such as Parkinson’s. The study was published in The FASEB Journal.

Here’s the study.

Google’s plan to extend our life span will change everything

Today’s news that Google is launching a new company (Calico) to fight aging is epic. Epic. Fighting aging used to be the realm of biologists and doctors, but now that the engineers are getting involved, progress will likely move much faster. This is very good news for those of us who want to see health spans extended for everyone.

Here’s Time’s breaking story.

Here’s my op-ed about it.

Here’s Aubrey de Grey’s op-ed.

Longevity interview with Aubrey de Grey

This Newsweek article contains an excellent conversation about longevity — how we might live longer and what that might mean.

Here’s one of my favorite parts of the NW interview with Aubrey de Grey:

NW: But would we really want to live forever?

De Grey: The reason why we want to live a long time is not to live a long time. It’s that we want to not get Alzheimer’s. Do you want to get Alzheimer’s?

NW: Not particularly.

De Grey: All right. Do you think there’s some age at which you will want to get Alzheimer’s?

NW: Probably not.

De Grey: Exactly. It’s the same for cancer and other diseases. That’s why it’s so important for me to emphasize that any longevity benefits that we get out of this are just a side effect.

Stopping all cancer with a single drug?

That’s the hope of Dr. Irving Weissman of Stanford University. According to Science Magazine:

A single drug can shrink or cure human breast, ovary, colon, bladder, brain, liver, and prostate tumors that have been transplanted into mice, researchers have found. The treatment, an antibody that blocks a “do not eat” signal normally displayed on tumor cells, coaxes the immune system to destroy the cancer cells.

Scientists slow aging in mice by tweaking brain’s hypothalamus

From Singularity Hub:

When we age, all parts of our body deteriorate over time. But while aging as a whole might be an accumulation of disparate processes, scientists have long wondered if it might be controlled by some central location in the body. Researchers have now uncovered an area in the brain about the size of an almond in humans that wields powerful control over the body’s aging process. By manipulating a single substance secreted by the hypothalamus they were able to extend the lives of mice. The work opens up the possibility that the hypothalamus may be an important target in treating age-related diseases such as heart disease and Alzheimer’s.

Here’s a link to the press release and the Nature article.

Bone made in lab from stem cells

Here’s a nice summary of the research from the WSJ:

Dr. de Peppo and his colleagues used a method known as reprogramming to transform human skin cells into embryonic-like stem cells, which can become all other cells in the body.

When certain chemicals were added, the stem cells became cells that can go on to form bone. The bone cells were placed on a scaffold, a sort of frame where they could grow and achieve a three-dimensional structure. The scaffold had been made by washing a cow’s bones in chemicals, which left behind a collagen-based structure.

After the scaffold was seeded with the bone cells, it was put in a bioreactor, a tabletop device that provides nutrients and removes waste. As a result, bits of bone, each about 16 square millimeters (0.025 square inches) in size, grew on the scaffold.

Toddler is youngest to ever get lab-made windpipe

“A 2-year-old girl born without a windpipe now has a new one grown from her own stem cells, the youngest patient in the world to benefit from the experimental treatment.” Read more here from AP.

And here’s a quote from Dr. Macchiarini, who did the surgery and is a pioneer in the field:

“The most amazing thing, which for a little girl is a miracle, is that this transplant has not only saved her life, but it will eventually enable her to eat, drink and swallow, even talk, just like any other normal child,” Macchiarini said in a statement. “She will go from being a virtual prisoner in a hospital bed to running around and playing with her sister and enjoying a normal life, which is a beautiful thing.”

See more here at ABC News.