Category Archives: Longevity tech

Researchers Grow Blood Vessel in a Week

News from Sahlgrenska Univ. Hospital in Sweden:

“Two tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown in a new study from Sahlgrenska Academy and Sahlgrenska Univ. Hospital published in EBioMedicine.”

[…]

“We believe that this technological progress can lead to dissemination of the method for the benefit of additional groups of patients, such as those with varicose veins or myocardial infarction, who need new blood vessels,” Holgersson says. “Our dream is to be able to grow complete organs as a way of overcoming the current shortage from donors.”

Cure for Type 1 diabetes imminent after Harvard stem-cell breakthrough?

This is big news if it works in humans. From the Telegraph:

“A cure for diabetes could be imminent after scientists discovered how to make huge quantities of insulin-producing cells, in a breakthrough hailed as significant as antibiotics. Harvard University has, for the first time, managed to manufacture the millions of beta cells required for transplantation. It could mean the end of daily insulin injections for the 400,000 people in Britain living with Type 1 diabetes. And it marks the culmination of 23-years of research for Harvard professor Doug Melton who has been trying to find a cure for the disease since his son Sam was diagnosed with Type 1 diabetes as a baby.”

[…]

This Device Could Detect Dozens of Cancers With a Single Blood Test

It’s still a long way away, but this is a great idea (and from Singularity University).

From Wired:
“A new startup, dubbed Miroculus, is building a device that could easily and affordably check for dozens of cancers using a single blood sample. Known as Miriam, this low-cost, open source device made its public debut at the TEDGlobal conference in Rio De Janeiro on Thursday, with TED curator Chris Anderson calling it “one of the most thrilling demos in TED history.”

Potential for ‘in body’ muscle regeneration

More great work from Wake Forest:

New research in mice and rats, conducted at Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine, suggests that “in body” regeneration of muscle tissue might be possible by harnessing the body’s natural healing powers.

Reporting online ahead of print in the journal Acta Biomaterialia, the research team demonstrated the ability to recruit stem cells that can form muscle tissue to a small piece of biomaterial, or scaffold that had been implanted in the animals’ leg muscle. The secret to success was using proteins involved in cell communication and muscle formation to mobilize the cells.

“Working to leverage the body’s own regenerative properties, we designed a muscle-specific scaffolding system that can actively participate in functional tissue regeneration,” said Sang Jin Lee, Ph.D., assistant professor of regenerative medicine and senior author. “This is a proof-of-concept study that we hope can one day be applied to human patients.”

How lizards regenerate their tails: researchers discover genetic ‘recipe’

A team of researchers from Arizona State University have discovered the genetic “recipe” for lizard tail regeneration.

“Using next-generation technologies to sequence all the genes expressed during regeneration, we have unlocked the mystery of what genes are needed to regrow the lizard tail,” said lead author Kenro Kusumi. “By following the genetic recipe for regeneration that is found in lizards, and then harnessing those same genes in human cells, it may be possible to regrow new cartilage, muscle or even spinal cord in the future.”

The findings are published in the journal PLOS ONE.

Making Old Bones New Again

“A new study from biomedical engineers at Rensselaer Polytechnic Institute demonstrates how the compound N-phenacylthiazolium bromide, or PTB, dissolves the sugary impurities within bone tissue that cause our femurs, fibulas, and other bones to become more fragile. Using PTB to reduce bone fragility and boost bone flexibility could lead to new strategies for preventing bone fractures in elderly individuals, as well as accelerated bone healing in patients with diabetes or osteoporosis.”

See more here.

Revolutionary new blood test ‘could detect ALL types of cancer’

From the DailyMail:

“A revolutionary blood test that could detect any type of cancer has been developed by British scientists.
It is hoped the breakthrough will enable doctors to rule out cancer in patients presenting with certain symptoms – saving time and preventing costly and unnecessary invasive procedures and biopsies.
Early results have shown the simple test can diagnose cancer and pre-cancerous conditions from the blood of patients with melanoma, colon cancer and lung cancer with a high degree of accuracy.”

Google’s New Moonshot Project: the Human Body

Google has announced a new ‘baseline’ study of the human body. Here’s the story from the WSJ.

“Google has embarked on what may be its most ambitious and difficult science project ever: a quest inside the human body.

Called Baseline Study, the project will collect anonymous genetic and molecular information from 175 people—and later thousands more—to create what the company hopes will be the fullest picture of what a healthy human being should be.”

Silicon Valley Moves the Needle on Curing Aging

Here’s a piece I wrote for Slate.

“Silicon Valley, known for entrepreneurs, gadget lovers, and paradigm breakers, has recently turned its attention towards longevity, powering an important cultural change on the topic. The interests of these movers and shakers run the gamut, from using technology to improve our clunky healthcare system to literally solving the problem of aging.”

Read more here.

Science Fiction Becomes Science-Fact: Two Strategies for Repairing Humans

Here’s my first article in a series for Slate magazine on longevity. Thanks to Prudential for sponsoring my obsession with health extension!

“Not long ago, it would have sounded like science fiction to discuss growing human organs in the lab or re-writing DNA. Yet today both are realities that will change the world and allow for longer and healthier lives.

Already, lab-grown bladders, windpipes and blood vessels have been successfully created and implanted into humans. Most recently, tissue engineering pioneer Dr. Anthony Atala and his team at the Wake Forest Institute for Regenerative Medicine announced another breakthrough: lab-made vaginas—one of the most complex organs made to date. In four girls with MRKH syndrome, a medical condition in which the vagina and uterus are underdeveloped or absent, Dr. Atala’s team was able to create new organs that functioned normally, dramatically increasing each patient’s quality of life.

[…]

Read more here.

US regulators fast-track novel leukemia therapy

The FDA is looking to speed up the availability of a new technique that put 89 percent of cancer patients into remission. Here’s the story.

“The personalized immunotherapy known as CTL019 was developed by the University of Pennsylvania and was designated a “breakthrough therapy” by the US Food and Drug Administration.

That means the experimental therapy will benefit from a speedier than average review process and will get extra attention from the FDA toward development for market.”

New method for delivering stem cells helps heal bone

From Singularity Hub:

“One trouble with stem cells is that they don’t stay put. When doctors put cardiovascular progenitor cells in the heart to heal damage from a heart attack, the cells are whisked away in the bloodstream in a matter of hours.”

[…]

“University of Rochester biomedical engineer Danielle Benoit encapsulated bone progenitor cells in a hydrogel wrapper and placed it on the bone she aimed to heal. Benoit hoped the wrapper would result in fewer stem cells being washed away and more sticking around to do the work of healing the bone.”

‘Bionic pancreas’ for diabetes patients passes test

From AP:

“Scientists have made big progress on a “bionic pancreas” to free some people with diabetes from the daily ordeal of managing their disease. A wearable, experimental device passed a real-world test, constantly monitoring blood sugar and automatically giving insulin or a sugar-boosting drug as needed, doctors said Sunday.”

A vaccination to prevent heart attacks?

That’s what scientists at the Harvard Stem Cell Institute are working on. They’ve already had success in mice, “permanently reducing cholesterol levels in mice with a single injection, potentially reducing heart attack risk by up to 90 percent.” Great work — hope it will translate for human patients as well!

An At-Home Medical Device That Cuts Out Trips to the Doctor

This seems like a super-cool device! I hope the FDA approves it quickly — I want one.

From Wired:

“The iPhone has enabled all sorts of crazy interactions, but a new device called Cue could be the first iOS accessory that uses boogers as a primary user input. The tabletop analyzer brings the power of a medical laboratory into the home and allows people to test their levels of testosterone, inflammation, vitamin D, and fertility with small amounts of blood, saliva, or nasal swabs.”

Scientists regenerate immune organ in mice

UK scientists report that they have fully restored a degenerated organ in a living animal, a discovery that could pave the way for future human therapies.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine, at the University of Edinburgh, who led the research, said: “By targeting a single protein, we have been able to almost completely reverse age-related shrinking of the thymus. Our results suggest that targeting the same pathway in humans may improve thymus function and therefore boost immunity in elderly patients, or those with a suppressed immune system. However, before we test this in humans we need to carry out more work to make sure the process can be tightly controlled.”

Here’s a BBC article about the work. And the original press release.

Dr. Atala on 3D tissue printing

Here’s a recent article by tissue engineering pioneer Dr. Anthony Atala. He makes a great point that printing tissue is beneficial not just so doctors can replace parts, but also so that drugs can be put through better testing.

He writes: “[I]n collaboration with five other institutions, we are working to print miniature hearts, lungs, blood vessels and livers onto “chips” that will be connected with a blood substitute. Called a “body on a chip,” the system has the potential to speed up the development of new drugs because it could potentially replace testing in animals, which can be slow, expensive and not always accurate.”

Awesome.

Blood vessel cells can repair organs, say Weill Cornell scientists

Another great bioengineering study. This one showing the possibility of repairing organs simply by injecting them with engineered endothelial cells.

Here’s the press release:

Damaged or diseased organs may someday be healed with an injection of blood vessel cells, eliminating the need for donated organs and transplants, according to scientists at Weill Cornell Medical College.

In studies appearing in recent issues of Stem Cell Journal and Developmental Cell, the researchers show that endothelial cells — the cells that make up the structure of blood vessels — are powerful biological machines that drive regeneration in organ tissues by releasing beneficial, organ-specific molecules.

They discovered this by decoding the entirety of active genes in endothelial cells, revealing hundreds of known genes that had never been associated with these cells. The researchers also found that organs dictate the structure and function of their own blood vessels, including the repair molecules they secrete.

Together, the studies show that endothelial cells and the organs they are transplanted into work together to repair damage and restore function, says the study’s lead investigator, Shahin Rafii, M.D., a professor of genetic medicine and co-director of the medical college’s Ansary Stem Cell Institute and Tri-SCI Stem Center. When an organ is injured, its blood vessels may not be able to repair the damage on their own because they may themselves be harmed or inflamed, says Dr. Rafii, who is also an investigator at the Howard Hughes Medical Institute.

A step on the way to therapeutic brain cells?

Will a person’s own brain cells be used to repair their brain one day? Maybe. Here’s an article that discusses the potential first steps — taking brain cells from a living person and growing more of them.

From the Third Age:

Researchers at the University of Western Ontario have found that cells from brain biopsies can be used to grow large numbers of patient’s own brain cells. These new therapeutic cells, when reintegrated in to the patient’s brain, express a broad array of natural and potent protective agents providing preservation and protection against injury, toxins, and neurodegenerative diseases such as Parkinson’s. The study was published in The FASEB Journal.

Here’s the study.